Роль академической науки в формировании теоретических основ уранового рудообразования В.А. Петров, С.А. Устинов

Юбилейное заседание межотраслевого Координационного научнотехнического совета по геологии, поискам и разведке месторождений урана, посвященном 80-летию становления отечественной урановой геологии Москва, ФГБУ «ВИМС», 23 мая 2023 г.

Добыча урана по странам на фоне роста выработки АЭ

После 2025 г. – снижение добычи урана и дефицит мощностей (вывод из эксплуатации рудников в связи с истощением запасов)

ranium

Demand

URANIUM 2022: Resources, Production and Demand. Productio **OECD-NEA. 2022**

Характеристика запасов урана основных рудных районов РФ

Балансовые запасы урана по состоянию на 01.01.2021 г. составляли 710,6 тыс. т, они заключены в недрах 53 месторождений (*Государственный доклад, 2021*)

Объекты	Геолого-промышленный тип	Запасы U, тыс.т.	Содержание U, %	Способ отработки	Категории себестоимости
					долл./ кг U
Стрельцовское	Мо-U жильно-штокверковый в ВТС	116,6	0,164	Горный подземный	80-130
рудное поле, ПАО					
"ППГХО"					
Витимский район, АО	U песчаниковый пласто- и	44,4	0,045	Скважинное подземное	40-80
"Хиагда"	линзообразный в палеодолинах			выщелачивание	
	неогена				
Зауральскй район,	U песчаниковый пласто- и	14,8	0,023	Скважинное подземное	40-80
АО Далур	линзообразный в юрских			выщелачивание	
	палеодолинах				
Эльконский район,	Au-U жильно-штокверковый в	382,7	0,147	Горный подземный	130-260
АО "Эльконский ГМК"	долгоживущих разломах				
Чикойский район, АО	U (бетаураноти. въл ж ьно-		0 41	Ком инированный:	80-130
УДК "Горное"	штокверковь ин			ий с подземным	
				вы элачиванием	
Оловский район	U пласто- и лин-ообраз	 ,4	0,-77	инированный:	80-130
	вулканогенно-терригенных			горный с подземным	
	впадинах			выщелачиванием	

Base Metal Deposits Found in the World Between 1900 and 2015 Depth of Cover (Metres)

Excludes Nickel Laterite deposits and undersea deposits

- (a) Stratabound copper deposits in Poland, found while drilling for oil
- (b) Admiral Bay zinc deposit in Australia, found while drilling for oil

Динамика освоения геологического пространства для добычи ТПИ

Глубины залегания Cu, Ni u Pb-Zn месторождений, открытых с 1900 г. (по Schodde, 2014, 2016 в Geochemical Perspectives. 2017. Vol. 6. No 1)

Динамика освоения геологического пространства на примере урана

Период времени от открытия до начала отработки U месторождений различными способами (*IAEA, 2020*): ISL – СПВ, OP –карьеры, UG –подземный способ

Переход от «классической» описательной структурно-формационной классификации МАГАТЭ к генетическим моделям месторождений, основанным на минерально-системном подходе (1)

В – магматические/метаморфические флюиды

Переход от «классической» описательной структурно-формационной классификации МАГАТЭ к генетическим моделям месторождений, основанным на минерально-системном подходе (2)

Descriptive Uranium Deposit and Mineral System Models (IAEA, 2020)

Соотношение трех основных U минеральных систем (Осадочные - Приповерхностные, Метаморфические и Магматические), связанных с тремя типами рудоносных флюидов. Между этими конечными элементами существует континуум месторождений, представленных гибридными стилями минерализации, например, месторождения Fe-оксидного-Cu-Au-U (IOCGU) типа (*по Skirrow et al., 2009*)

Генетические модели U рудообразования для СРП

1. Фильтрационная модель (ВИМС – Модников и др., 1984; Наумов, 1985): источник урана - герцинские граниты фундамента кальдеры, по которым просачивались восходящие потоки гидротермальных растворов в стадию предрудной гидрослюдизации, выщелачивали подвижный уран и переотлагали его в зоне рудоотложения согласно «уранил-карбонатной» модели.

2. Полигенная модель (Ищукова, 1998): является дополнением генетической модели группы ВИМСа глубинным мантийным источником урана при заимствовании части урана из герцинских гранитов фундамента кальдеры.

3. *Магматогенно-гидротермальная (карбонатная) модель* (*ИГЕМ РАН – Вольфсон и др., 1984*): основной источник - верхнекоровый очаг кислой магмы, специализированный на уран, а формы переноса и условия отложения урана определяются «уранил-карбонатной» физико-химической моделью.

4. Конвективная модель (Нанси – М. Кюне, Chabiron et al., 2003): основной источник урана ураноносные риолиты, завершающие разрез осадочновулканогенного чехла кальдеры. Процесс мобилизации урана из риолитов проходил с участием конвективных ячеек, образовавшихся над верхнекоровым очагом кислой магмы. В верхней части ячеек циркулирующие растворы выщелачивают уран из риолитов, затем опускаются по разломам на глубину нескольких километров, где нагреваются от магматического очага и поднимаются по другим разломам вверх, отлагая уран в рудных телах.

⁽after Cuney and Kyser, 2008)

5. Экзогенная модель (Яснош, 1999; Черников и др., 2009): главным источник урана - вмещающие оруденение осадочно-вулканогенные породы, из которых уран выщелачивался метеорными водами. Возможная роль гидротермальных процессов сводится к поставке в зону рудоотложения восстановителей (сульфидов – В.В. Яснош). Глубокозалегающие рудные тела в породах фундамента кальдеры объясняются глубоким проникновение вадозных вод по зонам разломов.

6. Магматогенно-гидротермальная (фторидная) модель (Алешин и др., 2007): предполагает источником урана кислую эволюционированную Li-F магму верхнекорового очага, от которого рудоносные флюиды отщеплялись и поднимались по разломам в герцинских гранитах фундамента, а уран переносился в виде фторидных комплексов U4+. Отложение урана в рудных телах происходило на температурном барьере при падении температуры ураноносных флюидов от 530 до 300 °C, без изменения валентного состояния урана

Концепция минеральных систем

Адаптация в 90-х годах прошлого столетия принятого в нефтяной геологии системного подхода (*Magoon, Dow, 1994*) к месторождениям ТПИ (*Wyborn et al., 1994; Knox-Robinson, Wyborn, 1997*)

позднемезозойских урановых месторождений Забайкалья (Вишняков, 1986)

Формирование минеральной системы месторождений СРП

• Отличительная особенность палеогидродинамики термоартезианских систем ВТС (депрессий) - слабая проявленность внешнего по отношению к системе источника флюидов

• Мобилизация, перенос и отложение рудных компонентов осуществляются изначально присутствовавшими в системе флюидами, термоконвективная циркуляция которых инициируется тепловой энергией субвулканического магматического очага

Результаты интерпретации разрезов и карт распределения плотностных масс, КОСКАД-3D (данные ФГУП «ВИМС»)

Соктуй Милозан (Ва) Стрельцовское РП (U)

Тепловая конвекция флюидов – механизм формирования уникальных U месторождений СРП

► На примере Антей-Стрельцовской рудообразующей системы выполнены расчеты для Вынужденно-Конвективной Модели с глубинным магматическим источником урана и Свободно-Конвективной Модели с коровыми источниками урана (*Пэк и др., 2018, 2020*).

Верифицированная числовыми моделями гипотеза термоконвективной циркуляции флюидов в остаточном тепловом поле магматического очага кальдеры объясняет поступление урана из трех источников его ближней мобилизации: 1) подкальдерного очага, 2) пород фундамента и 3) вулканических пород выполнения кальдеры.

Соучастие в рудогенезе трех высокопродуктивных источников урана является редким случаем и проливает свет на происхождение уникальных по запасам руд СРП в отличии от таких вулканогенных месторождений, как Сианшань в Китае и МакДермитт в США.

Млн лет Тектоно-магматический цикл		гоно-магматический цикл	Главные магматические комплексы и эффузивно- субвулканические серии	Изотопный возраст*
100	100 Ранне- и позднемеловой, завершающий		Субщелочные базальты и андезибазальты, трахиан- дезиты, туфы	130—94 млн лет
h		Раннемеловой-поздне-	Субщелочные риолиты, трахириолиты, перлиты, трахириодациты тургинской серии, гипабиссаль- ные экструзии сиенит-порфиров и кварцевых мон- цонитов	150—141 млн лет
Мезозойский	юрскии	Кукульбейский гранит-лейкогранитный комплекс: биотитовые граниты, лейкограниты, амазонитовые Li–F-граниты	141–128 млн лет ~45 млн лет	
		Шахтаминский, амуджиканский и сретенский суб- щелочные гранитоидные комплексы: гранодио- риты, субщелочные граниты, монцониты, диориты	173—150 млн лет	
	Ĕ	Средне- и позднеюрски	Приаргунская и шадоронская серии субщелочных базальтов, трахиандезибазальтов, трахидацитов, дацитов, трахидиоритов	164—153 млн лет
220		Позднетриасовый	Каменская свита: толеитовые базальты, андезиба- зальты, риодациты (развиты только в крайней западной части территории)	212 млн лет
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ундинский интрузивный комплекс: амфибол-био- титовые граниты, гранодиориты, кварцевые дио- риты, габбро-диориты, лейкократовые граниты	275—239 млн лет
370	1 ерцинскии		Континентальный раннепермский вулканический комплекс развит только на сопредельной террито- рии Восточной Монголии	
590	590 Каледонский		Газимурский и борщевочный комплексы: гранито- гнейсы, плагиограниты, диориты, бластопорфиро- видные гнейсо-граниты	646—457 млн лет
Протерозой- рифей		Протерозой- рифей	Заурулюгуевский массив (комплекс), включая Уртуйский и Бамбакайский массивы: гранито- гнейсы, порфиробластовые гранитоиды, амфибо- лизированные габброиды	1111-784 млн лет (Андреева и др., 2020)

* Сведения об изотопных возрастах приведены по собственным данным и из архивов лаборатории геохронологии и изотопной геохимии ИГЕМ РАН, а также из публикаций: Андреева и др., 1996; Андреева, Головин, 2001; Рублев, Буева, 1998; Голубев и др., 2010, 2011; Ишукова и др., 2007; Абушкевич, Сырицо, 2007; Сырицо и др. 2012; Берзина и др., 2013; Чернышев и др., 2014; Ступак и др., 2018.

Таблица 1. Схема последовательности магматических циклов в пределах Юго-Восточного Забайкалья

#### Примеры отложения и/или переотложения U-рудного вещества



Месторождения Балкашинское (1), Восток (2), Звездное (3) и Тушинское (4), Северный Казахстан (*Голубев, Чернышев, 2022*)





Месторождение Кианна, Shea Creek Project, Athabasca Basin, Canada (по *Sheehan et al., 2016*)

от U1 (1495±26 Ma) до U4 (855±27 Ma) ∆~640 Ma от U1 (1495±26 Ma) до U6 (482±11 Ma) ∆~1013 Ma

от Nt1 (413±7 Ma) до Nt2 (267±7 Ma) ∆~<mark>146</mark> Ma

#### Минерально-системный подход на основе ГИС моделирования



#### Выявление рудовмещающих комплексов и рудоносных структур:

- Кинематический анализ линеаментов в поле напряжений-деформаций периода ТМА
- Мультиспектральные характеристики рудосопровождающих метасоматитов
- Нейросетевые технологии анализа факторов рудогенеза

![](_page_12_Figure_6.jpeg)

зона, 3 – Куйтунская ВТС

0,6

# Проблемы оценки глубины формирования гидротермальных месторождений по данным о давлении минералообразующих флюидов

Для ориентировочной оценки глубины формирования гидротермальных месторождений используются данные об интервале изменения давления в ФВ от их максимальных Ртах до минимальных Ртіп значений с учетом ограничений на физически предельные значения этого интервала, которые определяются величинами литостатического и гидростатического давления флюидов (**Прокофьев В.Ю., Пэк А.А., 2015**).

Месторождение, регион	<i>Р</i> , бар	Метод*	$P_{\rm max}/P_{\rm min}$	T _{гом} , °С	
1	2	3	4	5	
Жировское, Россия	45-8	1	5.6	270-140	
Корю, Япония	68-31	1	2.2	310-170	
Джеонгью-Буан, Корея	140-55	1	2.5	320-103	
Балей, Россия	150-30	1	5.0	355-130	
Саншин, Ю. Корея	150-30	1	5.0	310-136	
Риддер-Сокольное, Казахстан	198-20	1	9.9	370-80	
Юный, Россия	210-70	1	3.0	376-139	
Кочбулак (жилы), Узбекистан	205-5	1	41	370-65	
Кочбулак (трубки), Узбекистан	265-6 1275-260	1 2	44.2 4.9	465-105	
Банска Штьявница, Словакия	245-5	1	49	380-125	
Эль Тениенте, Чили	300-200	1	1.5	504-225	
Баоготу, Китай	320-20	1	16	400-156	
Месторождения типа Карлин, Китай	330-105	1	3.1	310-98	
Апигама, Греция	380-50	1	7.6	235-125	

*Метод оценки давления: 1 – пересечение изохоры и изотермы для гетерогенного флюида; 2 – по насыщенным хлоридным рассолам.

## НЕОБХОДИМЫ М СТРУКТУРНЫЕ МАРКЕРЫ !

![](_page_13_Figure_5.jpeg)

Температуры и давления, определенные по ФВ в минералах урановых месторождений (Наумов В.Б., Дорофеева В.А., Миронова О.Ф., 2015)

#### Реконструкция флюидодинамических режимов и глубины рудообразования по ПСФВ

![](_page_14_Figure_1.jpeg)

#### Оценка рудного потенциала территорий по данным ДЗЗ и ГИС

![](_page_15_Figure_1.jpeg)

Landsat-8 composites (Nafigin et al., 2022)

Алгоритм оценки территорий для геологоминералогического картирования на основе статистических методов обработки данных дистанционного зондирования КА Landsat-8

#### Основные методы:

- анализа главных компонент (PCA)
- минимальной доли шума (MNF)
- независимый компонентный анализ (ICA).

![](_page_15_Figure_8.jpeg)

Схема распределения кластеров, перспективных на рудную минерализацию (Au, U, Mo, Pb-Zn, Sn, W, Ta, Nb, Li, флюорит)

#### ГИС- и нейросетевые технологии для прогноза рудного потенциала

![](_page_16_Figure_1.jpeg)

#### Разнообразие структур нейросетевых моделей

 Нейросети используются для решения различных задач (распознание лиц, номеров машин, текста) и для каждой разработаны свои модели структур.

 Перспективы использования нейросетевых технологий для прогнозирования рудного потенциала территорий несомненны, особенно в части анализа набора пространственновременных предпосылок и признаков.

![](_page_16_Figure_5.jpeg)

Пример использования ГИС- и нейросетевых технологий для выявления структурно-геологических и тектонических факторов рудогенеза: **А** – плотность линеаментов; **Б** – тектоническая обстановка; **В** – распределение проницаемых ячеек (размер 1х1 км) на основе расчёта тенденции к сдвигу разломных зон; **Г** – распределение проницаемых ячеек на основе расчёта фрактальной размерности Минковского.

#### Роль академической науки в формировании теоретических основ уранового рудообразования

![](_page_17_Figure_1.jpeg)

Эшелонированный комплекс наземно-космических средств прогноза рудного потенциала перспективных площадей