III НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ

МИНЕРАЛЬНО-СЫРЬЕВАЯ БАЗА МЕТАЛЛОВ ВЫСОКИХ ТЕХНОЛОГИЙ ОСВОЕНИЕ, ВОСПРОИЗВОДСТВО, ИСПОЛЬЗОВАНИЕ

Москва, ФГБУ «ВИМС», 21-22 ноября 2023

ПЕРЕРАБОТКА СПОДУМЕНОВОГО КОНЦЕНТРАТА КОЛМОЗЕРСКОГО МЕСТОРОЖДЕНИЯ С ПОЛУЧЕНИЕМ КАРБОНАТА ЛИТИЯ ДЛЯ БАТАРЕЙНЫХ МАТЕРИАЛОВ

Касиков А.Г., Щелокова Е.А., Куншина Г.Б., Бочарова И.В., Кузнецов И.А.

Российская Академия Наук Кольский научный центр

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева

ОСНОВНЫЕ ИЗВЕСТНЫЕ МЕСТОРОЖДЕНИЯ ЛИТИЕВЫХ МИНЕРАЛОВ И ОЦЕНОЧНЫЕ РЕСУРСЫ

Страна	Примеры месторождений	Основной минерал	Оценочные ресурсы (млн т)		
США	Бессемер-Сити, Кингс-Маунтин- Бельт, Макдермитт/ Кингс-Вэлли, Северная Каролина	Сподумен, гекторит	13,8		
Конго	Китотоло, Маноно	Сподумен	3,80		
Россия	Белереченское, Этыкинское, Гольцовое, Колморзерское, Ворониетундровское	Сподумен, лепидолит	3,7		
Канада	Barraute / Quebec, Bernic Lake / Tanco, James Bay, La Corne, La Motte, Yellowknife	Сподумен	2,4		
Китай	Daoxian, Gajika, Jaijika, Maerkang, Ningdu, Yichun	Лепидолит, петалит, сподумен	2,4		
Сербия	Долина Джадар	Жадарит	1,0		

Сульфатная схема переработки

ЩЕЛОЧНАЯ СХЕМА ПЕРЕРАБОТКИ

Сернокислотная схема переработки

Общий вид породы Колмозерского месторождения

Влияние температуры на декриптацию: α -Li(Na)Al[Si₂O₆] $\rightarrow \beta$ -Li(Na)[AlSi₂O₆]

РЕНТГЕНОГРАММЫ СПОДУМЕНОВОГО КОНЦЕНТРАТА: А – ИСХОДНЫЙ, В – ДЕКРИПИТАЦИЯ 950 °C, С – ДЕКРИПИТАЦИЯ 1150 °C

Влияние продолжительности сульфатизации на степень извлечения лития и алюминия из сподумена.

Рептгенограмма сподуменового концентрата после сульфатизации и выщелачивания Условия: t_{докр.} = 950 °C, расход H₂SO₄ 150 % к теоретическому количеству, t_{сульфатизации} = 250 °C, τ_{сульфатизации} = 1,5 ч. Влияние добавки остатка сернокислотного выщелачивания сподумена на прочность цементного камня при разном содержании добавки и времении твердения

p-based)	Кол-во доб. мас. %	В/Ц	Прочность при сжатии через сут. твердения, МПа								
			1	7	28						
I Muller	0	0,27	71.2	95,9	95,9						
	3	0,30	61,4	94,7	102,6						
я	5	0,31	65,6	93,2	104,4						
	10	0,32	79,5	94,8,	114,7						
SiO											

Состав остатков после сульфатизации и выщелачивания сподуменового концентрата

Li	K	Na	Fe	Al	Ca	Si
0.05-0.1	0.1	0.01-0.3	0.39-0.4	11.9–14.	0.11	68 7

Химический состав Cs,RbAl(SO₄)₂·12H₂O S Si Na Al Cl K Ca Mn Fe P 1,6 10,8 19,3 0,36 0,63 0,22 0,06 0,32 1,23 0,08 Cs,RbAl(SO4)2(H2O)12 20 30 40 60 50 20 (°) Химический состав K,NaAl(SO₄)₂·nH₂O (n=1-6) Al S Si Cs Cl Ρ Mn Fe Rb 26,3 0,03 0,19 2,27 0,13 0,61 0,18 9,53 0,05 -NaAl(SO4)2(H2O)6 - KAl(SO4)2(H2O) 20 10 30 50 40 60 20 (°) 13

Battery Grade (99.5%) Lithium Carbonate (Li₂CO₃) for Battery Research

Impurity Analysis (wt%) by ICP									
Pb	≤0.0001	Cl	≤0.001						
SO ₄ ^{2.}	≤ 0.03	Na	≤0.001						
Mg	≤0.001	Al	≤0.0005						
Si	≤0.0005	K	≤0.0001						
Ca	≤0.001	Mn	≤0.0001						
Ni	≤0.0001	Fe	≤0.0001						
Cu	≤0.0001	Zn	≤0.0001						

Lithium Carbonate **Battery Grade** Li2CO3 Purity: ≥ 99.5% Element Value (wt.%) Lead (Pb) ≤0.002% Copper (Cu) ≤0.001% lron (Fe) ≤0.01% Calcium (Ca) ≤0.02% Sodium (Na) ≤0.04% Potassium (K) ≤0.01% Chlorine (Cl) ≤0.01% Sulfate (SO4) ≤0.1% Hydrochloric Acid ≤0.05% Insoluble Matter

Наименование	Li2CO3		Содержание примесей (ррт)												
	, wt. %	Fe	Ni	K	Al	Cu	Pb	Mn	Zn	Si	Ca	Mg	Na		SO4
Li2CO3 (б/очист)	99.0	50	_	_	_	5	_	8	_	_	200	_	-		630
Li2CO3 (очищ.)	99.6	6	_	9	1.5	6	_	5	_	60	18	_	99		200

Использование карбоната лития при получении твердых электролитов для ЛИА

Среди неорганических твердых электролитов замещенные сложные фосфаты со структурой NASICON состава $\text{Li}_{1+x} \text{Al}_x \text{M}^{\text{IV}}_{2-x}(\text{PO}_4)_3$, где ($\text{M}^{\text{IV}} - \text{Ti}$ или Ge) считаются одними из наиболее перспективных твердых электролитов. Высокая проводимость по иону Li^+ , термическая и химическая устойчивость, стабильность на воздухе перспективны для использования их в качестве электролита и компонента композитных электродов в полностью твердотельных ЛИА.

О твердых электролитах со структурой NASICON (Na Super Ion CONductors) с общей формулой Na1+xZr2SixP3-xO12 ($0 \le x \le 3$) впервые сообщили Goodenough и Hong в 1976 г.

Литиевые аналоги с общей формулой LiM2(PO4)3, где M может быть Ti⁴⁺, Ge⁴⁺ и т.д., имеют ромбоэдрическую структуру (R-3c) и изоструктурны Na1+xZr2SixP3-xO12. Высокая ионная проводимость литиевых аналогов обусловлена особенностями кристаллической структуры. Каркас NASICON образован тетраэдрами PO₄ и октаэдрами AO₆.

Использование твердого электролита на практике может не только существенно повысить безопасность ЛИА, но и увеличить срок их службы за счет снижения деградационных процессов.

Газонепроницаемая стеклокерамическая пластина в литий-воздушных аккумуляторах

Твердотельный литий-воздушный аккумулятор: литиевый анод, пленка из полимерного электролита, пластина из твердого электролита LATP и электрод из углеродных нанотрубок и частиц твердого электролиТа

H. Kitaura et al. /Adv. Energy Mater. 2012. X.2. P.889

Li/ PEO / LAGP/ LiFePO₄

Kubanska A. et al. / J. Electroceram. 2017. V.38. P.189

Частицы LAGP размещены в матрице активных материалов обоих электродов. Оптимальное содержание 60% LAGP

Aboulaich A. et al. / Adv. Energy Mater. 2011. V.1. P.179.

$LiFePO_4/LAGP/Li_3V_2(PO_4)_3$

Твердые электролиты со структурой NASICON

Дифрактограммы LATP после спекания порошка при 800°С (а) и 1000°С (б) в течение 2 ч. *-AlPO₄, х-TiP₂O₇

Дифрактограмма LAGP после спекания порошка при 850°С в течение 2 ч.

электрофизические измерения

Для изучения **Li-ионной проводимости** исследовали дисперсию комплексного импеданса образцов в диапазоне частот 10³-2·10⁶ Гц с амплитудой переменного тока 100 мВ. Величину проводимости определяли экстраполяцией высокочастотной части годографа на ось активных сопротивлений и рассчитывали по формуле

$$\sigma = \frac{4h}{R\pi d^2}$$

где *h* - толщина таблетки, *d* - диаметр таблетки, *R* - сопротивление таблетки. Электронную проводимость (σ_e) определяли методом потенциостатической хроноамперометрии и рассчитывали по формуле:

$$\sigma_{\rm e} = \frac{I_{\rm cT}h}{US}$$

где I_{ct} - ток стабилизации, А, *U* -приложенное постоянное напряжение, В, *h* - толщина таблетки, *S* - площадь поперечного сечения таблетки.

Установлено, что использование при синтезе полученного из сподумена карбоната лития обеспечивает образование монофазных продуктов LATP и LAGP в соответствии с технологической схемой.

Ионная проводимость синтезированных твердых электролитов LATP и LAGP составила ~2·10⁻⁴ См/см при комнатной температуре, а электронная не превышала 10⁻⁹ См/см.

Соотношение между ионной и электронной проводимостью удовлетворяет требованиям, предъявляемым к материалам для разработки твердотельных устройств на их основе.

Импедансметр Z-2000 и

Установка для измерения электрофизических характеристик ТЭ методом импедансной спектроскопии

Спасибо за внимание!